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Abstract

A nonperturbative analytic solution of the high charge and energy

(HZE) Green's function is used to implement a computer code for

laboratory ion beam transport in multilayered materials. The code

is established to operate on the Langley nuclear fragmentation model

used in engineering applications. Computational procedures are es-

tablished to generate linear energy transfer (LET) distributions for a

specified ion beam and target for comparison with experimental mea-

surements. The code was found to be highly efficient and compared
well with the perturbation approximation.

Introduction

Green's function was identified as the likely means of generating efficient high charge and

energy (HZE) shielding codes for space engineering that are capable of being validated in

laboratory experiments (ref. 1). A derivation of Green's function as a perturbation series

gave promise for the development of a laboratory-validated engineering code (ref. 2), but

computational inefficiency provided a major obstacle to the code development (ref. 3). More

recently, nonperturbative approximations to the HZE Green's function have shown promise in

providing an efficient validated engineering code (refs. 4 and 5). Described in the present report

is a laboratory code using a nonperturbative Green's function to derive linear energy transfer

(LET) spectra behind multilayered targets for ion beams with Z (charges) < 28 corresponding
to the major components of the galactic cosmic ray spectrum.

Green's Function for a Single Medium

We restrict our attention to the multicharged ions (atomic number Zj and atomic mass Aj)
for which the Boltzmann equation may be reduced (ref. 6) to

Sj(E)+aj ¢j(x,E)= Ecyjk ¢k(x,E) (1)
k

where Cj(x, E) is the ion flux at x with energy E (in MeV/amu), Sj(E) is the change in E

per unit distance, aj is the total macroscopic reaction cross section, and ajk is the macroscopic
cross section for the collision of an ion of type k to produce an ion of type j. The solution to
equation (1) is to be found subject to the boundary condition

,j (0,E) = f5 (E) (2)

which, for laboratory beams, has only one value ofj for which fj(E) is not zero and where fj(E)
is described by a mean energy Eo and energy spread a such that

1 f-(E-Eo) 2 ]fj (E) - v/__ a exp 2a 2 j
(3)

The usual method of solution is to proceed toward solving equation (1) as a perturbation series

(refs. 1 and 6). In practice, the computational requirements limit tile usefulness of the technique
for deep penetration (ref. 3).



The Green'sfunction(Gjm) is introducedasa solutionof

[00 - ]ox Sj(E)+oj C_m(x,E, Eo)= Z_jk Ckm(_,E, Eo)
k

(4)

subject to the boundary condition

Gjm (0, E, Eo) = _jm _ (E - Eo) (5)

where 6jm is Kronecker's 6 and 6(E - Eo) is Dirac's _ function. The solution to equation (1) is

given by superposition as

_j(x,E) = _ j ajk (x,E,E') fk (E') dE' (6)
k

If Gjk(X, E, E I) is known as an algebraic quantity, the evaluation of equation (6) may be
accomplished by simple integration techniques, and then the associated errors in numerically

solving equation (1) are avoided (ref. 7).

The above equations can be simplified by transforming the energy into the residual range

(rj) as

and defining new field functions as

Thus, equation (4) becomes

(0 0Orj

E

rj = / dE'/_j (E')
o

(7)

_._ (x,rj,_') : _j (E) aim (x,E,E')

_j (_j) = _j (_) _ (E)

(8)

(9)

(lo)

+ crj) Gjm (x, rj,r_) = _ uj . Gkm (x, rk, rlm) (11)k Uk cr3k

with the boundary condition

and with the solution to the ion fields given by

O(3

m 0

Note that uj, which is the range scale factor as ujrj = Umrm, is taken as uj = Z2/Aj. The

solution to equation (11) is written as a perturbation series

Gjrn (x, rj,r_) = _ G !i) (x, rj,v_m) (14)3rn
i
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in which

and

(1)
whereG)m(x,rj

@0)m (x, rj,r_) = g(j) 6jm6 (X + rj - r_)

_!1)(x,r,,r')
m

, r_n ) is zero unless

_j_jm g (J, m)

(15)

(16)

"J (rj+x)< ' < "j +_ (lr)
Pm -- rrn -- _--_rj

for Vm > L,j. If _,j > Pro, as can happen in neutron removal, the negative of equation (16) is used

and the upper and lower limits of equation (17) are switched. The higher terms are approximated
as

@i) (x, rj,r_) _ E vjajklaklk2,'",Oki_lm g(j, kl,k2,".,ki_l,m)m (18)x (.re-.j)

In the above equations,

and

kl ,k2,...,ki_ 1

g (J) = e-ajx (19)

g (Jl,J2,... ,Jn,Jn+l) = g (Jl,J2,...,Jn-l,jn) - g (Jl,j2,...,Jn-l,Jn+l)

CrJn+l -- ajn
(20)

(i) (i)
Note that G)m(X , rj,/m) is purely dependent on x for i > 0, which we represent as _]m(X). (See

ref. 3.) In terms of the above, the solution to equation (1) becomes (from ref. 3)

_j (_,_j)= _-_,x?j (_.+ x)

-,m (x) (_m_)-Pm (/_)]
ra_i

(21)

In equation (21), ' and r'rmu rng are given by the upper and lower limits of the inequality of

equation (17). The symbol _'m(r_z) refers to the integral spectrum

oo

'r_n

(22)

We note that

with

P_ (r:_)- u_ (u')

o(2

Fm(E') = f f,,, (E) dE
E I

(23)

(24)
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and U

' j dEISm (E) (25)r m _---

0

We now introduce nonperturbative terms for the summation in equation (21).

First, we recall that the g function of n arguments was generated by the perturbation solution

of the transport equation neglecting ionization energy loss (ref. 1) given by

0 ] (26)
k

subject to the boundary condition

gjm(O) = 6jm
(27)

for which the solution is

gjm (x) = 6jm 9 (m) + ajm g (j,m) +.."
(28)

It is also true that

gjm (x) = Z gjk (x - y) 9km (Y) (29)

k

for any positive values of x and y. Equation (29) may be used to propagate the function gjm(x)

over the solution space after which

as,. (x,rj, r') .__-_J6jm6(_+ rj - r') + (30)x (-m - -j)

The approximate solution of equation (1) is then given by

_j (x,rj) = _-_J_) (,'j+ x)

+ _ uj [gjm (x)- e-ajX6jml [Fm (rtmu)- Fm (r_g) 1 (31)

which is a relatively simple quantity (ref. 4).

Green's Function in a Shielded Medium

The major simplification in the Green's function method results from the fact that the scaled

spectral distribution of secondary ions to a first approximation depends only on the depth of

penetration as seen in equations (16), (18), and (30). Our first approach to a multilayered
Green's function will rely on this observation and assume its validity for multilayered shields.

If we consider a domain labeled as "1" that is shielded by a second domain labeled as "2,"

the number of type j ions at depth x in 1 due to type m ions incident on domain 2 of thickness y

is

g_2j._(_,y) = _ _jk (_) 92kin(y) (32)
k
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The leadingterm in equation(32)is the penetratingprimariesas

(33)

in whichall higherordertermsarewithin the bracketsof equation(33).

Thefirst termof thescaledGreen'sfunctionis then

(o)
12jm (x,y, rj,rm) = c--aljX--62JY_jrn_ [X + rj -- (r_ -- py)] (34)

in which p is the range scale factor for the two media

R1¢(E)
p - (35)

R2_(E)

The ratio of range in water to range in aluminum for proton beams (eq. (35)) is shown

in sketch A. We take a single value for p corresponding to 600 MeV/amu. The secondary

contribution is similarly found by noting that equation (17) becomes

,<uj_5 (_j + x + py) < _., + x + py (36)
Pm -- -- u_--_Lrj

from which the average spectrum is evaluated. The full approximate Green's function is then

_12jm (x,y, rj,r_tt ) _ e---O'ljX--O'2JY(_)._ (X _- py _- rj -- rlrrt)

l/j [gl2jm (x,y) -- e-_ljX-a2JY_jm )

+ (_ + p_)(-m- "5) (37)

Equation (37) is our first approximation to the Green's function in a shielded medium (two

layers) and is easily modified to multilayers. We now consider the first spectral modification.

Range of H20

Range of A!

1.0

.5

o I I i I

10 -! 10 0 101 10 2 10 3

E, MeV

Sketch A
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Showingthat the first collisionterm hasthe properties

I Vjaljme-almX-a2m y

r.(1) , I.m - _jl
_12_m (z, y,i'j,i'm) = - -

uja2jme al3X a21Y

lyre - vjl

(38)

is easy; we use these properties to derive a simple correction for the average spectrum as

_(1) (X,12jm y, rj

o(1)
Vj Yl2jm (x, y)

'¢) = (x+ py)(.m- -j)
(39)

where tJl2jm _ , y) is the first collision term of equation (39) and

! !
rmu zc r m£-!

I"m 2
(40)

is the midpoint of -! between its limits given by equation (36). The bjm term of equation (39)rm

has the property that
!

frm_ _, (41)
Jr'mr bjm (x,y) (r !- rrn) dr != 0

thus ensuring that the first term of equation (39) is, indeed, the average spectrum as required.

The spectral slope parameter is found to be

b'jt_m (0"ljrn e-alrnx-a2my - a2jm e-aljx-a2jy) (42)

bjm (x,y) = (x + py) (Vra - vj) lyre - vjl

A similarly simple spectral correction can be made to the higher order terms. The spectral

correction given in equation (42) will be included in the present Green's function code.

LET Spectra for Laboratory Beams

We use the boundary condition appropriate for laboratory beams given by equation (3). The

cumulative spectrum is given by

1[ (E- Eo'_]Fj(E)=_ 1-eft\ _¢_- ]j
(43)

The cumulative energy moment needed to evaluate the spectral correction is

2 o \ v_a- ]] +_exp ya_-
(44)

The average energy on any subinterval (El, E2) is then

= Ej (El) - Ej (E2)

Fj (El) - Fj (E2)

(45)



The beam-generatedflux is

_)j (X, y, rj) = e-_ljX-_2J y fj (rj _- x _- py)

-jm(x,y)

÷rb! 1) , ] (46)

where E is evaluated using equation (45) with E 1 and E2 as the lower and upper limits associated
with r t and _ respectively.rn_ rmu ,

The differential fluence spectra for a 600-MeV/amu 56Fe beam with a 2.5-MeV/amu standard
deviation incident on a water slab are shown in figure 1. A single layer of 5 cm of water is shown

in figure l(a) and a double layer of 2.5 cm of water followed by 2.5 cm of water is shown in

figure l(b). A consistency check is performed on the multilayered code by comparing it with

the single-layered computation when the two layers are of the same size and composition. The

ratio of multilayered results to single-layered results differs by less than +1 percent. The LET

distribution is found by using the methods of reference 8. The corresponding LET spectra are

shown in figure 2. The highest LET peak is due to the primary beam and the iron fragments.

The successive peaks below iron are due to lower atomic weight fragments. The lowest LET peak

consists of relativistic charge fragments of p, d, and t particles that are produced in abundance

in HZE collisions (ref. 9). The peak near 10 MeV/cm consists of he- and c_-particles that are

also produced abundantly. Many of the HZE fragments are produced with a charge near the

projectile charge, as Shinn, Townsend, and Wilson found earlier for hydrogenic targets (ref. 10).

Note that no distinguishable difference exists between the LET spectra of the single-layered code

(fig. 2(a)) and the multilayered code (fig. 2(b)) at the same penetration depth in water, which
further demonstrates code consistency.

A series of evaluations for a (2.24-g/cm 2) lead-scattering foil is shown in figure 3. The

lead-scattering foil is usually part of the accelerator beam line (at the Lawrence Berkeley

Laboratory Bevalac accelerator) with the result that the fragments from the lead target are

seen as contamination. Clearly, these fragments must be modeled to properly interpret the

attenuation of the beam in the water target in actual experiments. The corresponding LET

spectra at various depths of a water target are shown in figure 4. The importance of the

fragmentation in the scattering foil is seen in comparing figure 4(a) with figure 4(b). Note

that fewer of the fragmentations result in fragments near the beam charge for the lead foil in

comparison with the water target, as seen by comparing the relative magnitudes of the three

highest LET peaks in figures 2(a) and 4(a). These differences are part of the reason why
hydrogenic targets are important to space radiation protection. At greater depths the LET

distributions begin to overlap, and distinguishing the different charge groups becomes more

difficult. Such LET spectra will be compared with experimental measurements in the near
future.

Concluding Remarks

A formalism for the evaluation of Green's function in multilayered target configurations

has been derived and a computer code generated. The code satisfies a consistency check for

multilayered-material calculations when the layers are of uniform composition by comparing the

results with the single-layered code. The importance of the multilayered code in the analysis of
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experimental ion beams has been shown by demonstrating the effects of a lead-scattering foil in

tile Bewdac beam line. An analysis of such experiments is in progress.

NASA Langley Research Center

tlampton, VA 23681-0001

Septeml)er 1(}, 1993
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(a) 0 cm of H20 followed by 5 cm of H20.

Normalized

fluence density,

(MeV/amu) -1

Normalized

fluence density,

(MeV/amu) -1

(b) 2.5 cm of H20 followed by 2.5 cm of H20.

Figure 1. Differential fluence spectra for 600-MeV/ainu 56Fe beam with 2.5-MeV/amu standard deviationincident on water slab.
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Figure 2. LET distribution for 600-MeV/amu 56Fe beam with 2.5-MeV/amu standard deviation incident on
water slab.
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Figure 3. Differential fluence for 525-MeV/amu _6Fe beam with 2.5-MeV/amu standard deviation after passing
through 2.24-g/cm 2 lead-scattering foil and water target.
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through 2.24-g/cm 2 lead-scattering foil and water target.
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